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Abstract. In floating-point programs, guard instability occurs when the
control flow of a conditional statement diverges from its ideal execution
under real arithmetic. This phenomenon is caused by the presence of
round-off errors in floating-point computations. Writing programs that
correctly handle guard instability often requires expertise on finite pre-
cision arithmetic. This paper presents a fully automatic toolchain that
generates and formally verifies a guard-stable floating-point C program
from its functional specification in real arithmetic. The generated pro-
gram is instrumented to soundly detect when unstable guards may occur
and, in these cases, to issue a warning. The proposed approach combines
the PRECiSA floating-point static analyzer, the Frama-C software veri-
fication suite, and the PVS theorem prover.

1 Introduction

The development of floating-point software is particularly challenging due to the
presence of round-off errors, which originate from the difference between real
numbers and their finite precision representation. Since round-off errors accu-
mulate during numerical computations, they may significantly affect the evalua-
tion of both arithmetic and Boolean expressions. In particular, unstable guards3

occur when the guard of a conditional statement contains a floating-point ex-
pression whose round-off error makes the actual Boolean value of the guard differ
from the value that would be obtained assuming real arithmetic. The presence
of unstable guards amplifies the divergence between the output of a floating-
point program and its ideal evaluation in real arithmetic. This divergence may
lead to catastrophic consequences in safety-critical applications. Understanding
how round-off errors and unstable guards affect the result and execution flow of

⋆ This is the final authors’ draft of the paper published in Brijesh Dongol and Elena
Troubitsyna, editors, Integrated Formal Methods, volume 12546 of Lecture Notes in
Computer Science, pages 141–159, Cham, 2020. Springer International Publishing.

⋆⋆ Research by the first three authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.

3 In the literature [15,31], unstable guards are often referred to as unstable tests.
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floating-point programs requires a deep comprehension of floating-point arith-
metic.

This paper presents a fully automatic integrated toolchain that generates and
verifies guard-stable floating-point C code from its formal functional specification
in real arithmetic. This toolchain consists of:

– PRECiSA [19,29], a static analyzer for floating-point programs,4

– Frama-C [17], a collaborative tool suite for the analysis of C code, and
– the Prototype Verification System (PVS) [23], an interactive theorem prover.

The input of the toolchain is a PVS specification of a numerical algorithm
in real arithmetic, the desired floating-point format (single or double precision),
and initial ranges for the input variables. A formally verified program transfor-
mation is introduced to implement the real-valued specification using floating-
point arithmetic in the chosen floating-point format. This transformation is an
extended and improved version of the one presented in [31]. Numerically unstable
guards are replaced with more restrictive ones that preserve the control flow of
the real-valued original specification. These new guards take into consideration
the round-off error that may occur when the expressions of the original pro-
gram are evaluated in floating-point arithmetic. In addition, the transformation
instruments the program to emit a warning when the floating-point flow may
diverge with respect to the real number specification. This program transforma-
tion is designed to limit the overhead introduced by the new guards. Symbolic
error expressions are used to avoid concrete numerical assumptions on the input
variables. This symbolic approach is highly modular since the transformation is
still correct even if the input ranges are modified.

The static analyzer PRECiSA is extended with a module implementing the
proposed program transformation and with another module that generates the
corresponding C code. This C code includes ANSI/ISO C Specification Language
(ACSL) [1] annotations stating the relationship between the floating-point C im-
plementation and its functional specification in real arithmetic. To this end, the
round-off errors that occur in conditional guards and the overall round-off error
of each function in the program are estimated by PRECiSA. PVS proof certifi-
cates are generated stating the correctness of these estimations. The correctness
property of the C program states that if the program terminates without a warn-
ing, it follows the same computational path as the real-valued specification, i.e.,
all unstable guards are detected.

The Frama-C/WeakestPrecondition (WP) plug-in is used to generate verifi-
cation conditions in the language of PVS and it is customized to automatically
integrate the PVS certificates generated by PRECiSA into the proof of such
verification conditions. While PVS is an interactive theorem prover, these ver-
ification conditions are automatically proved by ad-hoc strategies developed as
part of this work. Therefore, neither expertise in theorem proving nor in floating-
point arithmetic is required from the user to verify the correctness of the gen-
erated C program. The proposed approach is applied to a fragment of the De-

4 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA.

https://github.com/nasa/PRECiSA
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tect and AvoID Alerting Logic for Unmanned Systems (DAIDALUS) software
library developed by NASA [21]. DAIDALUS is the reference implementation
of detect-and-avoid for unmanned aircraft systems in the standard document
RTCA DO-365 [25].

The remainder of the paper is organized as follows. Section 2 provides a brief
overview of floating-point numbers, unstable guards, and the tool PRECiSA. The
proposed program transformation to detect guard instability is introduced in
Section 3. Section 4 describes the integrated toolchain to automatically generate
and verify a probably correct floating-point C program from a PVS real-valued
specification. Section 5 discusses related work and Section 6 concludes the paper.

2 Preliminaries

Floating-point numbers [16] (or floats) are finite precision representations of
real numbers widely used in computer programs. In this work, F denotes the
set of floating-point numbers. The expression R(ṽ) denotes the conversion of
the float ṽ to reals, while the expression F(r) denotes the floating-point number
representing r , i.e., the rounding of r .

Definition 1 (Round-off error). Let ṽ ∈ F be a floating-point number that
represents a real number r ∈ R, the difference ∣R(ṽ) − r ∣ is called the round-off
error (or rounding error) of ṽ with respect to r.

When a real number r is rounded to the closest float, the round-off error is
bounded by half unit in the last place of r, ulp(r), which represents the differ-
ence between the two closest consecutive floating-point numbers ṽ1 and ṽ2 such
that ṽ1 ≤ r ≤ ṽ2 and ṽ1 ≠ ṽ2. Round-off errors accumulate through the computa-
tion of mathematical operators. The IEEE-754 standard [16] states that every
basic operation should be performed as if it would be calculated with infinite
precision and then rounded to the nearest floating-point value. Therefore, an ini-
tial error that seems negligible may become significantly larger when combined
and propagated inside nested mathematical expressions.

Let Ṽ be a finite set of variables representing floating-point values and V a
finite set of variables representing real values such that Ṽ∩V = ∅. It is assumed
that there is a function χr ∶ Ṽ → V that associates to each floating-point vari-
able x̃ a variable x ∈ V representing the real value of x̃. The set of arithmetic
expressions over floating-point (respectively real) numbers is denoted as Ã (re-
spectively A). The function RA ∶ Ã → A converts an arithmetic expression on
floating-point numbers to the corresponding one on real numbers. This function
is defined by replacing each floating-point operation with the corresponding one
on real numbers and by applying R and χr to floating-point values and vari-
ables, respectively. Conversely, the function FA ∶ A → Ã applies the rounding
F to constants and variables and replaces each real-valued operator with the
corresponding floating-point one.

The function RB ∶ B̃→ B is defined as the natural extension of RA to Boolean
expressions. Given a variable assignment σ ∶ V → R, evalB(σ,B) ∈ {true, false}
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denotes the evaluation of the real Boolean expression B. Similarly, given σ̃ ∶
Ṽ → F, ẽval B̃(σ̃, B̃) ∈ {true, false} denotes the evaluation of the floating-point

Boolean expression B̃. Boolean expressions are also affected by rounding errors.
When φ̃ ∈ B̃ evaluates differently in real and floating-point arithmetic, φ̃ is said
to be unstable.

Definition 2 (Unstable Guard). A guard φ̃ ∈ B̃ is said to be unstable if there
exist two assignments σ̃ ∶ {x̃1, . . . , x̃n} → F and σ ∶ {χr(x̃1), . . . , χr(x̃n)} → R
such that for all i ∈ {1, . . . , n}, σ(χr(x̃i)) = R(σ̃(x̃i)) and evalB(σ,RB(φ̃)) ≠
ẽval B̃(σ̃, φ̃). Otherwise, the guard is said to be stable.

The evaluation of a conditional statement if φ̃ then ãe1 else ãe2 is said to follow
an unstable path when φ̃ is unstable. When the flows coincide, the evaluation
is said to follow a stable path. The presence of unstable guards amplifies the
effect of round-off errors in numerical programs since the computational flow of
a floating-point program may significantly diverge from the ideal execution of
its representation in real arithmetic. Therefore, for establishing the correctness
of a numerical program, it is essential to correctly estimate the round-off error
associated with both stable and unstable paths.

PRECiSA [29] is a static analyzer for floating-point programs. PRECiSA
accepts as input a floating-point program and automatically generates a sound
over-approximation of the floating-point round-off error and a proof certificate
in PVS ensuring its correctness. Given a program to analyze, for every possible
combination of real and floating-point execution paths, PRECiSA computes a
conditional error bound of the form ⟨η, η̃⟩t↠ (r, ṽ, e), where η ∈ B̃ is a symbolic
path condition over the reals, η̃ ∈ B̃ is a symbolic path condition over the floats,
r, e ∈ A are symbolic arithmetic expressions over the reals, and ṽ ∈ Ã is a symbolic
expression over the floats. Intuitively, ⟨η, η̃⟩t ↠ (r, ṽ, e) indicates that if both
conditions η and η̃ are satisfied, the output of the ideal real-valued program is r,
the output of the floating-point implementation is ṽ, and the round-off error is
at most e, i.e., ∣r− ṽ∣ ≤ e. The flag t is used to indicate, by construction, whether
a conditional error bound corresponds to an unstable path, when t = u, or to a
stable path, when t = s. PRECiSA initially computes round-off error estimations
in a symbolic form so that the analysis is modular. Given the initial ranges for the
input variables, PRECiSA uses the Kodiak global optimizer [22,27] to maximize
the symbolic error expression and obtain a concrete numerical enclosure for the
error.

3 A Program Transformation to Detect Unstable Guards

This section presents a program transformation that converts a real-valued spec-
ification into a floating-point program instrumented to detect unstable guards.
This program transformation significantly extends the expressivity of the input
language of the transformation originally presented in [31]. In particular, it pro-
vides support for function calls, for-loops, predicates, and arithmetic expressions
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with inline conditionals. In addition, it improves the accuracy of the method to
detect guard instability.

Let Ω̃ be a set of pre-defined floating-point operations, Σ a set of function
symbols, Π a set of predicate symbols such that Σ ∩ Π = ∅, and Ṽ a finite
set of variables representing floating-point values, respectively. The syntax of
floating-point program expressions in S̃ is given by the following grammar.

Ã ∈ Ã ∶∶=d̃ ∣ x̃ ∣ ⊙̃(Ã, . . . , Ã) ∣ f̃(Ã, . . . , Ã) ∣ B̃? Ã ∶ Ã

B̃ ∈ B̃ ∶∶=true ∣ B̃ ∧ B̃ ∣ ¬B̃ ∣ Ã < Ã ∣ Ã ≤ Ã ∣ p̃(Ã, . . . , Ã)
S̃ ∈ S̃ ∶∶=Ã ∣ let x̃ = Ã in S̃ ∣ for(i0, in,acc0, λ(i,acc).S̃) ∣ if B̃ then S̃ else S̃

∣ if B̃ then S̃ [elsif B̃ then S̃ ]mj=1 else S̃ ∣ ω

where d̃ ∈ F, x̃ ∈ Ṽ, f̃ ∈ Σ, p̃ ∈Π, ⊙̃ ∈ Ω̃, i0, in,acc0 ∈ Ã, and i,acc ∈ Ṽ.
The expression φ̃? Ãthen ∶ Ãelse denotes an inline conditional statement that

can be used as a parameter in an arithmetic operator or in a function call.
The conjunction ∧, negation ¬, and true have the usual classical logic meaning.
The disjunction ∨ operator, the relations >, ≥, and the constant false can be
derived. The notation [elsif B̃ then S̃ ]mj=1 denotes a list of m conditional elsif
branches. Bounded recursion is added to the language as syntactic sugar using
the for construct. The expression for(i0, in,acc0, λ(i,acc).body) emulates a for-
loop where i ∈ Ṽ is the control variable that ranges from i0 to in, acc is the
variable where the result is accumulated with initial value acc0, and body is the
body of the loop. For instance, for(1,10,0, λ(i,acc).i+acc) represents the value
f(1,0), where f is the recursive function f(i,acc) ≡ if i > 10 then acc else
f(i + 1,acc + i). The body of the for-loop is restricted to be of type integer.
Therefore, it does not accumulate round-off errors. The transformation of more
generic for-loops requires the computation of the round-off error of a recursive
function, which is an open problem beyond the scope of this paper. The symbol
ω denotes a warning exceptional statement.

A floating-point program P̃ is defined as a set of function declarations of the
form f̃(x̃1, . . . , x̃n) = S̃ , where x̃1, . . . , x̃n are pairwise distinct variables in Ṽ and
all free variables appearing in S̃ are in {x̃1, . . . , x̃n}. The natural number n is
called the arity of f̃ . Henceforth, it is assumed that programs are well-formed in
the sense that, in a program P̃ , for every function call f̃(Ã1, . . . , Ãn) that occurs
in the body of the declaration of a function g̃, a unique function f̃ of arity n is
defined in P̃ before g̃. Hence, the only recursion allowed is the one provided by
the for-loop construct. The set of floating-point programs is denoted by P̃.

A real-valued program has the same structure of a floating-point program
where floating-point expressions are replaced with real-valued ones. A real-valued
program does not contain any ω statements. The set of real-valued programs is
denoted by P. The function FP ∶ P→ P̃ converts a real program P into a floating-
point one by applying FA to the arithmetic expressions occurring in P .

The input of the transformation is a real-valued program P . The straight-
forward floating-point implementation of P is initially computed as P̃ ∶= FP(P ).
Subsequently, the Boolean expressions in the guards of P̃ are replaced with more
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restrictive ones that take into consideration the symbolic round-off error. This
is done by means of two Boolean abstractions β+, β− ∶ B̃→ B̃ defined as follows.

Definition 3. Let εvar ∶ Ã → Ṽ be a function that associates to an expression
ãe ∈ Ã a variable that represents its round-off error, i.e., ∣ãe−RA(ãe)∣ ≤ εvar(ãe).
The functions β+, β− ∶ B̃→ B̃ are defined as follows, where ◇ ∈ {≤,<}.

β+(ãe ◇ 0) ∶=
⎧⎪⎪⎨⎪⎪⎩

ãe ◇ 0 if ∣ãe −RA(ãe)∣ ≤ 0

ãe ◇ − εvar(ãe) otherwise

β−(ãe ◇ 0) ∶=
⎧⎪⎪⎨⎪⎪⎩

¬(ãe ◇ 0) if ∣ãe −RA(ãe)∣ ≤ 0

¬(ãe ◇ εvar(ãe)) otherwise

β+(φ̃1 ∧ φ̃2) ∶= β+(φ̃1) ∧ β+(φ̃2) β−(φ̃1 ∧ φ̃2) ∶= β−(φ̃1) ∨ β−(φ̃2)
β+(¬φ̃) ∶= β−(φ̃) β−(¬φ̃) ∶= β+(φ̃)

Let εβvar ∶ B̃ → ℘(Ṽ) denote a function computing the error variables introduced
by applying β+ and β− to a Boolean expression. Given φ̃, φ̃1, φ̃2 ∈ B̃, εβvar(ãe◇0) ∶=
{εvar(ãe)}, where ◇ ∈ {≤,<}, εβvar(φ̃1∧ φ̃2) ∶= εβvar(φ̃1)∪εβvar(φ̃2), and εβvar(¬φ̃) ∶=
εβvar(φ̃). For each predicate p̃(x̃1,...,x̃n) = φ̃ such that εβvar(φ̃) = {e1, . . . , em},
φ̃ ≠ β+(φ̃), and ¬φ̃ ≠ β−(φ̃), two new predicates are introduced:

p̃+(x̃1, . . . , x̃n, e1, . . . , em) = β+(φ̃) p̃−(x̃1, . . . , x̃n, e1, . . . , em) = β−(φ̃)

Thus, the Boolean abstractions for a predicate call are defined as follows:

β+(p̃(ãe1, . . . , ãen)) ∶= p̃+(ãe1, . . . , ãen, e1, . . . , em)
β−(p̃(ãe1, . . . , ãen)) ∶= p̃−(ãe1, . . . , ãen, e1, . . . , em).

Generic inequalities of the form a < b are handled by replacing them with their
equivalent sign-test form a − b < 0. The following lemma states that β+ and
β− correctly approximate a floating-point Boolean expression and its negation,
respectively.

Lemma 1. Given φ̃ ∈ B̃, let fv(φ̃) be the set of free variables in φ̃. For all
σ ∶ fv(φ) → R, σ̃ ∶ fv(φ̃) → F, and x̃ ∈ fv(φ̃) such that F(σ(χr(x̃))) = σ̃(x̃), β+

and β− satisfy the following properties.

1. ẽval B̃(σ̃, β
+(φ̃)) ⇒ ẽval B̃(σ̃, φ̃) ∧ evalB(σ,RB(φ̃)).

2. ẽval B̃(σ̃, β
−(φ̃)) ⇒ ẽval B̃(σ̃,¬φ̃) ∧ evalB(σ,¬RB(φ̃)).

Given a program expression S̃, the function τ ∶ S̃→ S̃×℘(Ṽ), defined in Fig. 1,
returns a pair formed by the instrumented version of S̃ and the set of new error
variables introduced by β+ and β−. The functions τS ∶ S̃ → S̃ and τV ∶ S̃ → ℘(Ṽ)
return the first and the second projection of the result of τ respectively.

In the case of the conditional (Eq. (3.2)), when the round-off error is null and
it does not affect the evaluation of the Boolean expression, i.e., φ̃ = β+(φ̃) and
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τ(d̃) = ⟨d̃ , ∅⟩ τ(x̃) = ⟨x̃, ∅⟩ τ(⊙̃(Ãi)
n
i=1) = ⟨⊙̃(τS(Ãi))

n
i=1,

n

⋃
i=1

τV(Ãi)⟩ (3.1)

τ(if φ̃ then S̃1 else S̃2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨if φ̃ then τS(S̃1) else τS(S̃2),

τV(S̃1) ∪ τV(S̃2)⟩

if φ̃ = β+(φ̃) and

¬φ̃ = β−(φ̃)

⟨ if β+(φ̃) then τS(S̃1)

elsif β−(φ̃) then τS(S̃2)

else ω,

τV(S̃1) ∪ τV(S̃2) ∪ ε
β
var(φ̃)⟩

if φ̃ ≠ β+(φ̃) or

¬φ̃ ≠ β−(φ̃)

(3.2)

τ(if φ̃1 then S̃1 [elsif φ̃i then S̃i]
n−1
i=2 else S̃n) = (3.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ if φ̃1 then τS(S̃1)

[elsif φ̃i then τS(S̃i)]
n−1
i=2 else τS(S̃n),

n

⋃
i=1

τV(Si)⟩

if∀1 ≤ i ≤ n, φ̃i = β
+

(φ̃i)

and¬φ̃i = β
−

(φ̃i)

⟨ if β+(φ̃1) then τS(S̃1)

[elsif β+(φ̃i) ∧ ⋀
i−1
j=1 β

−

(φ̃j) then τS(S̃i)]
n−1
i=2

elsif ⋀
n−1
j=1 β

−

(φ̃j) then τS(S̃n)
else ω,
n

⋃
i=1

(τV(S̃i) ∪ ε
β
var(φ̃i))⟩

otherwise

(3.4)

τ(let x̃ = Ã in S̃) = ⟨let x̃ = τS(Ã) in τS(S̃), τV(S̃)⟩ (3.5)

τ(for(i0, in,acc0, λ(i,acc).S̃)) = ⟨for(i0, in,acc0, λ(i,acc). τS(S̃)), τV(S̃)⟩ (3.6)

τ(g̃(Ã1, . . . , Ãn)) = ⟨g̃τ(τS(Ã1), . . . , τS(Ãn), e
′

1, . . . , e
′

m),
n

⋃
i=1

{e′i}⟩, (3.7)

where g̃τ(x̃1, . . . , x̃n, e1, . . . , em) ∈ τ̄(P )

and ∀i = 1 . . .m, if ei = εvar(ãei), then e′i = εvar(ãei[x̃j ← τS(Ãj)]
n
j=1).

Fig. 1. Program transformation rules.

¬φ̃ = β−(φ̃), the transformation function τ is recursively applied to the subpro-
grams S̃1 and S̃2. Otherwise, the test on φ̃ is replaced by two more restrictive
tests on β+(φ̃) and β−(φ̃). The then branch is taken when β+(φ̃) is satisfied. By
Property 1 in Lemma 1, this means that in the original program both φ̃ and

R(φ̃) hold and, thus, the then branch is taken in both real and floating-point
control flows. The else branch of the transformed program is taken when β−(φ̃)
holds. This means, by Property 2 in Lemma 1, that in the original program the
else branch is taken in both real and floating-point control flows. When neither
β+(φ̃) nor β−(φ̃) is satisfied a warning ω is issued indicating that floating-point
and real flows may diverge. The function εβvar is applied to φ̃ to collect the new
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error variables introduced by the application of β+ and β−. The inline version of
the conditional is transformed in the same way.

For the n-ary conditional (Eq. (3.4)), in the case the round-off error does
not affect the evaluation of any of the Boolean expression, the transformation
function τ is applied recursively to the subprograms S̃1, . . . , S̃2. Otherwise, the
guard φ̃i of the i-th branch is replaced by the conjunction of β+(φ̃i) and β−(φ̃j)
for all the previous branches j < i. By Lemma 1, it follows that the transformed
program takes the i-th branch only when the same branch is taken in both real
and floating-point control flows of the original program. A warning is issued
by the transformed program when real and floating-point control flows of the
original program differ. The new variables introduced by the application of β+

and β− in each branch are computed by the εβvar function.
In the case of the function call (Eq. (3.7)), new error variables e′1, . . . , e

′

m

are introduced to model the instantiated error parameters where the formal
parameters x̃1, . . . , x̃n are replaced by the actual parameters Ã1, . . . , Ãn. These
new variables are added to the set τV(S̃). Thus, when g̃τ(x̃1, . . . , x̃n, e1, . . . , em) ∈
τ̄(P ) and for all i = 1 . . .m, if ei = εvar(ãei), then e′i = εvar(ãei[x̃j ← τS(Ãj)]nj=1).

The function τ̄ transforms a real-valued program P into a floating-point
program that is instrumented to detect unstable guards. It is defined as follows.

Definition 4 (Program Transformation). Let P ∈ P be a real-valued pro-
gram, the transformation τ̄ ∶ P→ P̃ is defined as

τ̄(P ) = ⋃{f̃τ(x̃1, . . . , x̃n, e1, . . . , ek) =if ⋁g̃τ (ȳ)∈fc(S̃ ′)(g̃
τ(ȳ) = ω) then ω else S̃ ′ ∣

f̃(x̃1, . . . , x̃n) = S̃ ∈ FP(P ), ⟨S̃ ′, {e1, . . . , ek}⟩ = τ(S̃)},

where fc(S̃) returns all the function calls ocurring in S̃ . The new parameters
e1, . . . , ek are called symbolic error parameters.

A check on each function call g̃τ(ȳ) occurring in the body of f̃ is performed.
If the returned value is warning, this is propagated as the result of f̃ . The
expression S̃ ′ is the instrumented body of f̃ obtained by applying the trans-
formation τ . Each function declaration is equipped with an additional set of
arguments e1, . . . , ek which correspond to the symbolic error parameters intro-
duced by the application of β+ and β− in the body of the function. Therefore,
there is one new argument for each floating-point arithmetic expression occur-
ring in the guard of a conditional. It can be argued that it would be sufficient
to add, for each argument in the original function declaration, a variable rep-
resenting its rounding error. In this case, the Boolean approximations β+ and
β− could be implemented by using the symbolic error expression computed by
PRECiSA. This approach has two main problems. First, such symbolic error
expressions, being real-valued, cannot be evaluated precisely in a floating-point
program. A trivial floating-point implementation would be affected by rounding
error, thus compromising the soundness of the transformation. Second, correctly
estimating the round-off error by using uniquely floating-point-operators is likely
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to produce a huge symbolic expression. This will lead to unintelligible code and,
possibly, in a loss of performances since a complex arithmetic expression needs
to be evaluated at runtime. In addition, the round-off error of computing the
error expression itself needs to be considered. This may lead to an excessively
coarse over-estimation resulting in a large number of false warnings. The choice
of using symbolic error parameters to model the round-off error of arithmetic
expressions avoids the aforementioned problems. This solution provides a good
level of modularity since the symbolic expression is independent of the variables’
initial ranges. Furthermore, this approach preserves the program structure of
the original program.

The following theorem states the correctness of the program transformation
τ̄ . The straightforward floating-point implementation of the original program
FP(P ) and the transformed program τ̄(P ) return the same output if and only
if the transformed program does not emit a warning.

Theorem 1. Given P ∈ P, for all f̃(x̃1, . . . , x̃n) = S̃ ∈ FP(P ), let f̃τ(x̃1, . . . , x̃n,
e1, . . . , em) ∈ τ̄(P ) be its transformed version. It holds that

f̃τ(x̃1, . . . , x̃n, e1, . . . , em) ≠ ω ⇐⇒ f̃(x̃1, . . . , x̃n) = f̃τ(x̃1, . . . , x̃n, e1, . . . , em).

The proposed program transformation (including Lemma 1 and Theorem 1) has
been formally specified and verified in PVS. 5

The intended semantics of the floating-point transformed program τ̄(P ) is the
real-valued semantics of the original program P , i.e., the real-valued semantics of
the transformed program RP(τ̄(P )) is not relevant for the notion of correctness
considered in this work. Therefore, even if the transformed program presents
unstable guards with respect to RP(τ̄(P )), Theorem 2 ensures that its floating-
point control flow preserves the control flow of the original specification P on real
arithmetic. The difference between the output of the real number specification P
and the one of the transformed floating-point implementation τ̄(P ) is bounded
by the error occurring in FP(P ) taking into consideration only the stable cases
(t = s), as stated in the following theorem. In the following, P[[P̃ ]](f̃) denotes
the set of conditional error bounds computed by PRECiSA for the function f̃
defined in the program P̃ .

Theorem 2 (Program Transformation Correctness). Given P ∈ P, for all
f(x1, . . . , xn) = S ∈ P , let f̃τ(x̃1, . . . , x̃n, e1, . . . , em) ∈ τ̄(P ) be its transformed
floating-point version. Let σ ∶ {x1 . . . xn} → R, and σ̃ ∶ {x̃1 . . . x̃n} → F, such that
for all i ∈ {1, . . . , n}, R(σ̃(x̃i)) = σ(xi), it holds that

f̃τ(x̃1, . . . , x̃n, e1, . . . , em) ≠ ω ⇐⇒ ∣f(x1, . . . , xn)−f̃τ(x̃1, . . . , x̃n, e1, . . . , em)∣ ≤ ef̃

where f̃τ(x̃1, . . . , x̃n, e1, . . . , em) ∈ τ̄(P ) and ef̃ = max{e ∣ ⟨η, η̃⟩t ↠ (r, ṽ, e) ∈
P[[FP(P )]](f̃), t = s}.

Therefore, all the unstable cases of the original program are detected in the
transformed program and they no longer influence the overall round-off error.

5 This formalization is available at https://shemesh.larc.nasa.gov/fm/PRECiSA.

https://shemesh.larc.nasa.gov/fm/PRECiSA
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Example 1. Consider the following fragment of DAIDALUS6, a software library
that implements a detect-and-avoid logic for unmanned aircraft systems (UAS).
A detect-and-avoid logic ensures that UAS remain well clear, e.g., safely sep-
arated, from traffic aircraft. The real-valued program WCV ∈ P consists of
six functions. The function wcv determines if two aircrafts (ownship and in-
truder), whose relative vertical position and velocity are given by (sx, sy, sz)
and (vx, vy, vz), respectively, are in loss of horizontal (hwcv) and vertical (vwcv)
well clear. The function tcoa computes the time to co-altitude of two vertically
converging aircraft. When the aircraft are vertically diverging, the function re-
turns 0. The function tcpa computes the time to (horizontal) closest point of ap-
proach. The function taumod is an estimation of tcpa that is less demanding on
sensor and surveillance technology. The constants DTHR, TTHR, ZTHR and
TCOA are distance and time thresholds used in the definition of the DAIDALUS
well-clear logic.

tcoa(sz, vz) = if szvz < 0 then −(sz/vz) else 0

tcpa(sx, sy, vx, vy) = if vx ≠ 0 ∧ vy ≠ 0 then −(sxvx + syvy)/(v
2
x + v

2
y) else 0

taumod(sx, sy, vx, vy) = if sxvx + syvy < 0

then (DTHR2
− s2x)/(sxvx + syvy)

else −1

vwcv(sz, vz) = ∣sz ∣ ≤ ZTHR ∨ (tcoa(sz, vz) ≥ 0 ∧ tcoa(sz, vz) ≤ TCOA)

hwcv(sx, sy, vx, vy) = let t = tcpa(sx, sy, vx, vy), tm = taumod(sx, vx, sy, vy) in

sxvx + syvy <= DTHR2

∨ ((sx + tvx)
2
+ (sy + tvy)

2
<= DTHR2

∧ 0 <= tm ∧ tm <= TTHR)

wcv(sx, sy, sz, vx, vy, vz) = hwcv(sx, sy, vx, vy) ∧ vwcv(sz, vz)

The program τ̄(WCV ) is obtained by using the transformation in Fig. 1. The
floating-point parameters are the rounding of the real ones, e.g., sx = χr(s̃x). The
floating-point rounding of each constant is denoted with a tilde. All inequalities
occurring in WCV have been rearranged to be in the form of a sign-test in the
transformed program. Error variables are introduced by β+ and β− as parameters
for each floating-point expression occurring in the guards. In addition, the error
parameters of the function calls are propagated to the caller. The meaning of
each error variable is shown as a comment in gray.

t̃coa
τ
(s̃z, ṽz, etcoa) = if s̃z ṽz < −etcoa then −(s̃/̃ṽ) %∣(s̃z ṽz) − (szvz)∣ ≤ etcoa

elsif s̃ṽ ≥ etcoa then 0 else ω

t̃cpa
τ
(s̃x, s̃y, ṽx, ṽy, ex, ey) = %∣ṽx − vx∣ ≤ ex, ∣ṽy − vy ∣ ≤ ey

if (ṽx < −ex ∨ ṽx > ex) ∧ (ṽy < −ey ∨ ṽy > ey) then −(s̃xṽx+̃s̃y ṽy)/̃(ṽ
2
x+̃ṽ

2
y)

elsif (ṽx ≥ ex ∧ ṽx ≤ −ex) ∨ (ṽy ≥ ey ∧ ṽy ≤ −ey) then 0 else ω

̃taumod
τ
(s̃x, s̃y, ṽx, ṽy, etau) = %∣(s̃xṽx + s̃y ṽy) − (sxvx + syvy)∣ ≤ etau

if s̃xṽx + s̃y ṽy < −etau then (D̃THR
2
−̃s2x)/̃(sxvx+̃syvy)

elsif s̃xṽx + s̃y ṽy ≥ etau then −1 else ω

6 DAIDALUS is available from https://shemesh.larc.nasa.gov/fm/DAIDALUS/.

https://shemesh.larc.nasa.gov/fm/DAIDALUS/.
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ṽwcv+(s̃z, ṽz, etcoa , e
v
1 , e

v
2 , e

v
3) = if t̃coa

τ
(s̃z, ṽz, etcoa) = ω then ω else

∣s̃z ∣−̃Z̃THR ≤ −ev1 %∣∣s̃z ∣−̃Z̃THR) − (∣sz ∣ − ZTHR)∣ ≤ ev1

∨ (t̃coa
τ
(s̃z, ṽz, etcoa) ≥ e

v
2 %∣t̃coa

τ
(s̃z, ṽz, etcoa) − tcoa(sz, vz)∣ ≤ e

v
2

∧ t̃coa
τ
(s̃z, ṽz, etcoa)−̃T̃COA ≤ −ev3)

%∣t̃coa
τ
((s̃z, ṽz, etcoa)−̃T̃COA) − (tcoa(sz, vz) −TCOA)∣ ≤ ev3

ṽwcv−(s̃z, ṽz, etcoa , e
v
1 , e

v
2 , e

v
3) = if t̃coa

τ
(s̃z, ṽz, etcoa) = ω then ω else

∣s̃z ∣ − Z̃THR > ev1 ∧ (t̃coa
τ
(s̃z, ṽz, etcoa) < −e

v
2 ∨ t̃coa

τ
(s̃z, ṽz, etcoa)−̃T̃COA > ev3)

h̃wcv
+

(s̃x, ṽx, s̃y, ṽy, ex, ey, etau , e
h
1 , e

h
2 , e

h
3 , e

h
4) =

let t = t̃cpa
τ
(s̃x, s̃y, ṽx, ṽy, ex, ey), tm = ̃taumod

τ
(s̃x, s̃y, ṽx, ṽy, etau) in

if t = ω ∨ tm = ω then ω else

s̃xṽx+̃s̃y ṽy−̃D̃THR
2
≤ −eh1 %∣(s̃xṽx+̃s̃y ṽy − D̃THR

2
) − (sxvx + syvy −DTHR2

)∣ ≤ eh1

∨ ((s̃x+̃tṽx)
2
+̃(s̃y+̃tṽy)

2
−̃D̃THR

2
≤ −eh2

%∣((s̃x+̃tṽx)
2
+̃(s̃y+̃tṽy)

2
−̃D̃THR

2
) − ((sx + tvx)

2
+ (sy + tvy)

2
−DTHR2

)∣ ≤ eh2

∧ tm ≥ eh3 %∣tm − taumod(sx, sy, vx, vy)∣ ≤ e
h
3

∧ tm−̃T̃THR ≤ −eh4) %∣(tm−̃T̃THR) − (taumod(sx, sy, vx, vy) −TTHR)∣ ≤ eh4

h̃wcv
−

(s̃x, ṽx, s̃y, ṽy, ex, ey, etau , e
h
1 , e

h
2 , e

h
3 , e

h
4) =

let t = t̃cpa
τ
(s̃x, s̃y, ṽx, ṽy, ex, ey), tm = ̃taumod

τ
(s̃x, s̃y, ṽx, ṽy, etau) in

if t = ω ∨ tm = ω then ω else (s̃xṽx+̃s̃y ṽy−̃D̃THR
2
> eh1

∧ ((s̃x+̃tṽx)
2
+̃(s̃y+̃tṽy)

2
−̃D̃THR

2
> eh2 ∨ tm ≥ eh3 ∨ tm−̃T̃THR > eh4))

w̃cv+(s̃x, ṽx, s̃y, ṽy, s̃z, ṽz, etcoa , ex, ey, etau , e
h
1 , e

h
2 , e

h
3 , e

h
4 , e

v
1 , e

v
2 , e

v
3) =

let hv = h̃wcv
+

(s̃x, ṽx, s̃y, ṽy, ex, ey, etau , e
h
1 , e

h
2 , e

h
3 , e

h
4),

vv = ṽwcv+(s̃z, ṽz, etcoa , e
v
1 , e

v
2 , e

v
3) in

if hv = ω ∨ vv = ω then ω else hv ∧ vv

w̃cv−(s̃x, ṽx, s̃y, ṽy, s̃z, ṽz, etcoa , ex, ey, etau , e
h
1 , e

h
2 , e

h
3 , e

h
4 , e

v
1 , e

v
2 , e

v
3) =

let hv = h̃wcv
−

(s̃x, ṽx, s̃y, ṽy, ex, ey, etau , e
h
1 , e

h
2 , e

h
3 , e

h
4),

vv = ṽwcv−(s̃z, ṽz, etcoa , e
v
1 , e

v
2 , e

v
3) in

if hv = ω ∨ vv = ω then ω else hv ∨ vv

4 Automatic Generation and Verification of Guard-Stable
C Code

The toolchain presented in this section relies on several tools: the static analyzer
PRECiSA, the global optimizer Kodiak [27]7, the static analyzer Frama-C, and

7 Kodiak is available from https://shemesh.larc.nasa.gov/fm/Kodiak/.

https://shemesh.larc.nasa.gov/fm/Kodiak/
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PVS Real
Program

Input Ranges

PRECiSA

Kodiak

PVS round-off errors
certificates

PVS

Instrumented
ACSL/C program Frama-C

Verification
Conditions

Fig. 2. Toolchain for automatically generate and verify guard-stable C code.

the interactive prover PVS. The input to the toolchain is a real-valued program
expressed in the PVS specification language, the desired floating-point precision
(single and double precision are supported), and initial ranges for the input
variables. The output is an annotated C program that is guaranteed to emit
a warning when real and floating-point paths diverge in the original program
and PVS certificates that ensure its correctness. An overview of the approach is
depicted in Fig. 2.

In this work, PRECiSA is extended to implement the transformation de-
fined in Section 3 and to generate the corresponding C code. Given a real-valued
program P and a desired floating-point format (single or double precision), PRE-
CiSA applies the transformation presented in Section 3. The transformed pro-
gram is then converted into C syntax and ANSI/ISO C Specification Language
(ACSL) annotations are generated. ACSL [1] is a behavioral specification lan-
guage for C programs centered on the notion of function contract. It is used to
state pre- and post-conditions, assertions, and invariants.

For each function f̃τ in the transformed program, a C procedure is auto-
matically generated. In addition, each function f in the original specification is
expressed as a logic axiomatic definition in ACSL syntax. This definition can be
seen as a predicate modeling the real-valued expected behavior of the function.
The floating-point version f̃ of f is also expressed as an ACSL definition.

An ACSL predicate called f stable paths is introduced to model under which
conditions real and floating-point flows coincide. ACSL preconditions are added
to relate each C floating-point expression with its logic real-valued counterpart
through the error variable representing its round-off error. As mentioned in Sec-
tion 3, a new error variable e ∶= εvar(ãe) is introduced for each floating-point
arithmetic expression ãe occurring in the conditional guards. For each new error
variable, a precondition stating that ∣ãe −RA(ãe)∣ ≤ e is added. A post-condition
is introduced for each function stating that, when the transformed function f̃τ

does not emit a warning, the predicate f stable paths holds and the difference
between f̃τ and its real-number specification f is at most the round-off error
computed for the stable paths of f̃ . For the functions containing for-loops, a
recursive real-valued version is generated as a logic axiomatic function in ACSL.
An invariant is also computed in order to relate the result of each iteration of
the for-loop with the corresponding call of the recursive real-valued function.
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Example 2. Consider the real-valued specification tcoa and the instrumented
function t̃coa

τ
defined in Example 1.The pseudo-code of the annotated C code

generated by PRECiSA is shown below, the pseudo-code of the ACSL annotation
are printed in gray.

/∗@ logic auxiliary functions:

real tcoa(real sz, real vz) = sz ∗ vz < 0 ? − (sz/vz) ∶ 0

double fp tcoa(double s̃z,double ṽz) = s̃z∗̃ṽz < 0 ? −̃(s̃z /̃ṽz) ∶ 0
predicate tcoa stable paths(real sz, realvz,double s̃z,double ṽz) =

(vz ≠ 0 ∧ sz ∗ vz < 0 ∧ ṽz ≠ 0 ∧ s̃z∗̃ṽz < 0) ∨ (sz ∗ vz ≥ 0 ∧ s̃z∗̃ṽz ≥ 0)
requires ∶ 0 ≤ e
ensures ∶result ≠ ω Ô⇒ (result = fp tcoa(s̃z, ṽz)
∧∀sz, vz(∣(s̃z∗̃ṽz) − (sz ∗ vz)∣ ≤ e Ô⇒ tcoa stable paths(sz, vz, s̃z, ṽz))∗/

double tau tcoa (double s̃z,double ṽz,double e){

if (s̃z∗̃ṽz < −e){return −̃(s̃z /̃ṽz);}
else { if (s̃z∗̃ṽz ≥ e){return 0;}

else {return ω;}}}

As already mentioned, PRECiSA handles programs with symbolic param-
eters and generates a symbolic expression modeling an over-estimation of the
round-off error that may occur. Given input ranges for the variables, a numer-
ical evaluation of the symbolic expressions is performed in PRECiSA with the
help of Kodiak, a rigorous global optimizer for real-valued expressions. Kodiak
performs a branch-and-bound search that computes a sound enclosure for a sym-
bolic error expression using either interval arithmetic or Bernstein polynomial
basis. Therefore, it is possible to instantiate the error variables in the trans-
formed program with numerical values representing a provably correct round-off
error over-estimation.

Example 3. The following function instantiates the symbolic function shown in
Example 2 assuming that 1 ≤ sz ≤ 1000 and 1 ≤ vz ≤ 1000.

/∗@ensures ∶∀sz, vz(1 ≤ sz ≤ 1000 ∧ 1 ≤ vz ≤ 1000 ∧ result ≠ ω∧
∣s̃z − sz ∣ ≤ ulp(sz)/2 ∧ ∣ṽz − vz ∣ ≤ ulp(vz)/2)
Ô⇒ ∣result − tcoa(sz, vz)∣ ≤ 2.78e − 12 ∗ /

double tau tcoa num(double s̃z,double ṽz){
return tau tcoa (s̃z, ṽz,1.72e − 10)}

Besides the transformed C program, PRECiSA generates PVS theorems that act
as formal certificates of the soundness of the computed estimations with respect
to the floating-point IEEE-754 standard [16]. These theorems are automatically
discharged in PVS by proof strategies that recursively inspect the round-off error
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expression and apply the corresponding lemmas included in the PVS floating-
point round-off error formalization [7]. The instrumented C code for the program
WCV defined in Example 1 and the corresponding PVS certificates are generated
by PRECiSA8 in 7.12 seconds. The C code consists of approximately 500 lines
of code including all the ACSL annotations.

The tool suite Frama-C [17] is used to compute a set of verification conditions
(VCs) stating the relationship between the transformed floating-point program
and the original real-valued specification. Frama-C includes several static ana-
lyzers for the C language that support ACSL annotations. The Frama-C WP
plug-in implements the weakest precondition calculus for ACSL annotations
through C programs. For each annotation, Frama-C computes a set of verifi-
cation conditions in the form of mathematical first-order logic formulas. These
verification conditions can be proved by a combination of external automated
theorem provers, proof assistants, and SMT solvers.

The WP plug-in has been customized to support the PVS certificates gen-
erated by PRECiSA in the proof of correctness of the C program. PRECiSA
also provides a collection of PVS proof strategies that automatically discharge
the VCs generated by Frama-C. To prove the VCs for a particular function f ,
it is necessary to use not only properties about floating-point numbers but also
the contracts of the functions that are called in the body of f . These proofs are
quite tedious and error-prone since several renaming and reformulation steps
are applied by Frama-C to the annotated C code. The PVS strategies follow
the syntactic structure of the input functions to determine which properties and
contracts are needed to prove each of the VCs generated by Frama-C. There-
fore, no expertise in floating-point arithmetic or in PVS is required to verify the
correctness of the generated C code.

Example 4. Consider again the pseudo-code for tcoa depicted in Example 2.
The verification conditions computed by Frama-C for the functions tau tcoa
and tau tcoa num are the following.

ϕtau tcoa = ∀e, sz, vz, es, ev ∈ R, s̃, ṽ ∈ F
(result ≠ ω ∧ e ≥ 0 ∧ ∣ṽz − vz ∣ ≤ ev ∧ ∣s̃z − sz ∣ ≤ es ∧ ∣(s̃z∗̃ṽz) − (vz ∗ sz)∣ ≤ e
⇒ ∣result − tcoa(sz, vz)∣ ≤ ε

/̃
(sz, es, vz, ev)).

ϕtau tcoa num = ∀sz, vz ∈ R, s̃z, ṽz ∈ F, (result ≠ ω ∧ 1 ≤ s̃z ≤ 1000 ∧ 1 ≤ ṽz ≤ 1000

∧ ∣sz − s̃z ∣ ≤ 1
2

ulp(sz) ∧ ∣vz − ṽz ∣ ≤ 1
2

ulp(vz) ∧ ∣(s̃z∗̃ṽz)−(vz∗sz)∣ ≤ 1.72e-10)
⇒ ∣result − tcoa(sz, vz)∣ ≤ 2.78e-12

The expression ε
/̃
(sz, es, vz, ev) denotes the symbolic error bound computed by

PRECiSA, the variable e denotes the round-off error of the expression s̃z∗̃ṽz,
which is introduced when the Boolean approximations β+ and β− are applied.
The proof of these verification conditions follows from the fact that when result
is not a warning ω, it is equal to t̃coa(s̃z, ṽz) and from the numerical certificates

8 This example is available at https://shemesh.larc.nasa.gov/fm/PRECiSA.

https://shemesh.larc.nasa.gov/fm/PRECiSA
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output by PRECiSA stating that ∣t̃coa(s̃z, ṽz)−tcoa(sz, vz)∣ ≤ ε
/̃
(sz, es, vz, ev)) =

2.78e-12.

5 Related Work

Several tools are available for analyzing numerical aspects of C programs. In
this work, the Frama-C [17] analyzer is used. Support for floating-point round-off
error analysis in Frama-C is provided by the integration with the tool Gappa [12].
However, the applicability of Gappa is limited to straight-line programs without
conditionals. Gappa’s ability to verify more complex programs requires adding
additional ACSL intermediate assertions and providing hints through annotation
that may be unfeasible to automatically generate. The interactive theorem prover
Coq can also be used to prove verification conditions on floating-point numbers
thanks to the formalization defined in [6]. Nevertheless, Coq [2] tactics need
to be implemented to automatize the verification process. Several approaches
have been proposed for the verification of numerical C code by using Frama-C
in combination with Gappa and/or Coq [4,5,3,13,18,30]. In [20], a preliminary
version of the technique presented in this paper is used to verify a specific case
study of a point-in-polygon containment algorithm. In contrast to the present
work, the aforementioned techniques are not fully automatic and they require
the user intervention in both the specification and verification processes.

Besides Frama-C, other tools are available to formally verify and analyze nu-
merical properties of C code. Fluctuat [14] is a commercial static analyzer that,
given a C program with annotations about input bounds and uncertainties on its
arguments, produces an estimation of the round-off error of the program. Fluc-
tuat detects the presence of possible unstable guards in the analyzed program,
as explained in [15], but does not instrument the program to emit a warning
in these cases. The static analyzer Astrée [9] detects the presence of run-time
exceptions such as division by zero and under and over-flows by means of sound
floating-point abstract domains. In contrast to the approach presented here, nei-
ther Fluctuat nor Astrée emit proof certificates that can be externally checked
by an external prover.

Precision allocation (or tuning) tools, such as FPTuner [8], Precimonius [26],
and Rosa [11], aim at selecting the lowest floating-point precision for the program
variables that is enough to achieve the desired accuracy. Rosa soundly deals with
unstable guards and with bounded loops when the variables appearing in the
loop are restricted to a finite domain. In contrast with the approach presented in
this paper, Rosa does not instrument the program to emit a warning when an un-
stable guard may occur. This means that the target precision may be difficult to
reach without additional optimization rewritings and a program transformation
as the one presented in this work. Program optimization tools aim at improv-
ing the accuracy of floating-point programs by rewriting arithmetic expressions
in equivalent ones with a lower accumulated round-off error. Examples of these
tools are Herbie [24], AutoRNP [32], Salsa [10], and CoHD [28].
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6 Conclusion

Unstable guards, which occur when rounding errors affect the evaluation of
conditional statements, are hard to detect and fix without the expert use of
specialized tools. This paper presents a toolchain that automatically generates
and verifies floating-point C code that soundly detects the presence of unstable
guards with respect to an ideal real number specification.

The proposed toolchain relies on different formal tools and formal techniques
that have been integrated to make the generation and verification processes fully
automatic. As part of the proposed approach, the program transformation origi-
nally proposed in [31] has been enhanced and improved. The floating-point static
analyzer PRECiSA [19,29] has been extended with two modules. One module
implements the transformation defined in Section 3. The other module gener-
ates the corresponding C/ACSL code. Thus, given a PVS program specification
written in real arithmetic and the desired precision, PRECiSA automatically
generates a guard-stable floating-point version in C syntax enriched with ACSL
annotations. Additionally, PVS proof certificates are automatically generated by
PRECiSA to ensure the correctness of the round-off error overestimations used
in the program transformation.

The absence of unstable guards in the resulting floating-point implementation
and the soundness of the computed round-off errors are automatically verified
using a combination of Frama-C, PRECiSA, and PVS. The Frama-C/WP [17]
plug-in customization developed in this work enabled a seamless integration
between the proof obligations generated by Frama-C and the PVS certificates
generated by PRECiSA. Having externally checkable certificates increases the
level of confidence in the proposed approach. In addition, no theorem prov-
ing expertise is required from the user since proof strategies, which have been
implemented as part of this work, automatically discharge the verification condi-
tions generated by Frama-C. To the best of authors’ knowledge, this is the first
automatic technique that is able to generate a formally-verified floating-point
program instrumented to detect unstable guards from a real-valued specifica-
tion. The proposed program transformation is designed to correctly detect any
divergence of flow with respect to the original program. However, due to the
error over-estimation used in the Boolean approximation functions, false warn-
ings may arise. The number of false warnings depends on the accuracy of the
round-off error approximation computed by PRECiSA, which has been shown
in [29] to be the most precise round-off error estimator handling programs with
let-in, conditionals, and function calls.

An interesting future direction is the integration of the proposed approach
with numerical optimization tools such as Salsa [10] and Herbie [24]. This inte-
gration will improve the accuracy of the mathematical expressions used inside a
program and, at the same time, prevent unstable guards that may cause unex-
pected behaviors. The proposed approach could also be combined with tuning
precision techniques [8,11]. Since the program transformation lowers the overall
round-off error, this would likely increase the chance of finding a precision al-
location meeting the target accuracy. Finally, the authors plan to enhance the
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approach to support floating-point special values and exceptions such as under-
and over-flows and division by zero.
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22. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Proceedings of the 5th International Conference on Verified
Software: Theories, Tools, Experiments (VSTTE). pp. 326–343. Springer (2013)

23. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Pro-
ceedings of the 11th International Conference on Automated Deduction (CADE).
pp. 748–752. Springer (1992)

24. Panchekha, P., Sanchez-Stern, A., Wilcox, J., Z., T.: Automatically improving
accuracy for floating point expressions. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2015.
pp. 1–11. ACM (2015)

25. RTCA SC-228: DO-365, Minimum Operational Performance Standards for Detect
and Avoid (DAA) Systems (May 2017)
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31. Titolo, L., Muñoz, C., Feliú, M., Moscato, M.: Eliminating unstable tests in
floating-point programs. In: Proceedings of the 28th International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR 2018). pp. 169–183.
Springer (2018)

32. Yi, X., Chen, L., Mao, X., Ji, T.: Efficient automated repair of high floating-point
errors in numerical libraries. PACMPL 3(POPL), 56:1–56:29 (2019)


	Automatic Generation of Guard-Stable Floating-Point Code

